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Abstract. The adiabatic evolution of two doubly degenerate (Kramers) levels is considered.
The general five-parameter Hamiltonian describing the system is obtained and is shown to be
equivalent to one used in the08 ⊗ (τ2 ⊕ ε) Jahn–Teller system. It is shown explicitly that the
resultingSU(2) non-Abelian geometric vector potential is that of the (SO(5) symmetric)SU(2)
instanton. Various forms of the potentials are discussed.

1. Introduction

Adiabatic evolution generates remarkable geometrical structures, as Berry [1] was the first
to emphasize. The evolution of a single non-degenerate state is associated with a geometric
U(1) vector potential, which is a function of the adiabatically changing parametersr. If
this state becomes accidentally degenerate in energy with another state at some pointr∗

in parameter space, theU(1) potential is that of a magnetic monopole situated atr∗ [1].
When the Hamiltonian is restricted to be real (rather than Hermitian) theU(1) potential is
that of a flux tube [1, 2]. Examples of both situations are known in Jahn–Teller systems:
the monopole in theT ⊗ τ2 system [3], and the flux tube in theE ⊗ ε system [4].

If the evolving state is itself degenerate throughout the evolution, the associated vector
potential is non-Abelian [5, 6]. A natural question to ask then is the following. Suppose two
such doublets become accidentally degenerate (four-fold degeneracy in all) at some point
in parameter space: what will be the nature of the non-Abelian potentials? The answer
to this question was, in fact, given some time ago [7]: namely the potentials are those
of the SU(2) Yang–Mills instanton [8–10]. However, the elegant mathematics of [7] did
not descend to the explicit construction of the instanton potentials, which are the quantities
most physicists prefer to deal with. Indeed, since such a degeneracy has co-dimension
five (the geometric Hamiltonian depending on five parameters), the relationship of the five-
dimensional potentials to those of the instanton, which is normally thought of as living
in four-dimensional Euclidean space, is not completely self-evident. Finally, no specific
physical example was considered in [7].

The purpose of the present paper is to fill these gaps. In section 2 we briefly recapitulate
the case of a two-level crossing and the associatedU(1) monopole potential, in order to
bring out later the very close analogy with the instanton. In section 3 we obtain the
generic five-parameter Hamiltonian describing this degeneracy pattern, and observe that
it is equivalent to that used in the08 ⊗ (τ2 ⊕ ε) Jahn–Teller system. In section 4 we
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calculate the associated geometric vector potentials in a five-dimensional Cartesian basis,
and show—using the formalism of Jackiw and Rebbi [11]—how they are in fact identical
to the familiar four-dimensional instanton potentials. In section 5 we adopt the coordinate
system used by Yang [12] in his detailed study of theSU(2) instanton (which he called
a generalized monopole), and show once more that the adiabatically generated potentials
agree exactly with Yang’s.

2. TheU (1) monopole and two-level crossing

The generic Hermitian Hamiltonian for any system with accidental two-level crossing
involves three parametersr = (r1, r2, r3) and has the form

H = r · σ (1)

whereσ = (σ1, σ2, σ3) are the Pauli matrices. The eigenvalues of (1) are±r, wherer = |r|.
One choice of normalized eigenvectors is

ψ+N =
1

[2r(r + r3)] 1
2

(
r + r3
r1+ ir2

)
=
(

cosθ2
eiφ sin θ

2

)
(2)

corresponding to the eigenvalue+r, and

ψ−N =
1

[2r(r + r3)] 1
2

(−r1+ ir2
r + r3

)
=
(−e−iφ sin θ

2
cosθ2

)
(3)

corresponding to the eigenvalue−r. In (2) and (3) we have given the forms in both
Cartesian coordinatesr = (r1, r2, r3) and in spherical polarsr = (r, θ, φ).

The geometric vector potentialAa is defined byAa = 〈ψ |i∂a|ψ〉, where the indexa
runs over the number of parameters. In the present case, a short calculation gives

A±N ≡ 〈ψ±N |i∇|ψ±N 〉 =
∓1

2r(r + r3) (−r2, r1, 0) (4)

or

(A±N)φ =
∓(1− cosθ)

2r sinθ
. (5)

Potentials (4) and (5) are those of a magnetic monopole of strength∓ 1
2 [10, 13], located

at the level-crossing pointr = 0. The potentialsA±N are evidently singular atθ = π , and
the corresponding eigenvectors are ill defined at that point. As is well known [14] this is
a consequence of the fact that the potential for a monopole must be singular on at least
one continuous line running from the monopole to infinity (the Dirac string). To avoid
the singularity one can cover the sphereS2 with two coordinate patches and define a non-
singular vector potential in each patch. The potentials are linked by a gauge transformation
in the region where the patches overlap. As the notation implies, in the present case the
potentialsAN are non-singular over all the surface ofS2 except for the south poleθ = π .
Correspondingly, one can obtain potentials which are non-singular except at the north pole
θ = 0 by using the eigenvectors

ψ+S =
1

[2r(r − r3)] 1
2

(
r1− ir2
r − r3

)
=
(

e−iφ cosθ2
cosθ2

)
(6)

and

ψ−S =
1

[2r(r − r3)] 1
2

(−r + r3
r1+ ir2

)
=
( − sin θ

2
eiφ cosθ2

)
. (7)
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The ‘S’ potentials are (see also [13])

A±S ≡ 〈ψ±S |i∇|ψ±S 〉 =
∓1

2r(r − r3) (r2,−r1, 0) (8)

or

(A±N)φ =
∓(−1− cosθ)

2r sinθ
. (9)

A±N are therefore the potentials in the ‘northern hemisphere’ patch, andA±S those in the
‘southern hemisphere’ patch. From the spherical polar forms of (2), (3), (6) and (7), we see
immediately that theψ±N are related to theψ±S by a phase transformation

ψ±N = e±iφψ±S (10)

implying thatA±N andA±S are related by a gauge transformation

A±N −A±S = ∓∇φ (11)

which is consistent with (5) and (9). If we take the equatorθ = π/2 as the overlap region
between theN andS patches, we see that after a full circuit of the equator the geometrical
phase exp[i

∮
A ·dr] matches smoothly (via (10)) fromN to S, but the non-trivial nature of

the gauge transformation (10) means that, in mathematical language, theU(1) bundle over
S2 is non-trivial, and is indeed the monopole bundle.

3. The Hamiltonian for the crossing of two doublets

We require a situation in which the two doublets remain degenerate through adiabatic
evolution. This can be ensured only by an appropriate symmetry, and the natural one
to consider here is time-reversal symmetry. If a system is even under time-reversal and
has half-odd integral total angular momentum, then each energy eigenstate will be at least
doubly degenerate (Kramers degeneracy). We therefore consider a pair of levels each of
which is a Kramers doublet, and construct the most general Hamiltonian,H , describing
such a system.

The 4× 4 matrix representation ofH must be Hermitian, and we choose a basis such
thatH is traceless, making the two doublets degenerate at zero energy. Further, we letT

denote the time-reversal operator and|φ〉, |φ̄〉 ≡ T |φ〉, |ψ〉, |ψ̄〉 represent the two Kramers
doublets whereT 2 = −1 andTHT −1 = H .

These equations lead to the relations

〈φ|H |φ̄〉 = 0 (12)

〈φ|H |φ〉 = 〈φ̄|H |φ̄〉 (13)

〈φ|H |ψ〉 = 〈φ̄|H |ψ̄〉∗ (14)

〈φ|H |ψ̄〉 = −〈φ̄|H |ψ〉∗. (15)

These constraints lead to a five-parameter description of the Hamiltonian in the basis
{|φ〉, |φ̄〉, |ψ〉, |ψ̄〉}:

H =


r5 0 r3+ ir4 r1+ ir2
0 r5 −r1+ ir2 r3− ir4

r3− ir4 −r1− ir2 −r5 0
r1− ir2 r3+ ir4 0 −r5

 . (16)
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We note that this Hamiltonian can be identified with the Hamiltonian of [15] in their
consideration of the08 ⊗ (τ2 ⊕ ε) Jahn–Teller system. To do this we interchange two
of their basis states:

(|1〉, |2〉, |3〉, |4〉)↔ (|1〉, |4〉, |3〉, |2〉) (17)

and identify

r1 = VT cosβ sinθ cosφ

r2 = −VT cosβ sinθ sinφ

r3 = −VE sinβ cosχ

r4 = −VE sinβ sinχ

r5 = VT cosβ cosθ.

(18)

Thus, we have an interesting physical example in which the non-Abelian geometrical
structure to be discussed in the following sections can be explored.

4. TheSU (2) instanton and two-doublet crossing

Matrix (16) has eigenvaluesR,R,−R,−R whereR = (r2
1+r2

2+r2
3+r2

4+r2
5)

1
2 , so we have

the natural generalization of (1) to the case in which the levels with energies+R and−R
(which cross atR = 0) are each doubly degenerate. When the adiabatically evolving level is
itself degenerate, the geometric vector potential becomes a matrix-valued field (non-Abelian
potential) [5, 6] defined by

Aija = 〈ψj |i∂a|ψi〉 (19)

wherei, j run over the labels of the locally single-valued basis in the degenerate space. We
proceed to calculate (19) for the problem defined by (16).

One choice of normalized eigenvectors is

ψ+1 =
i√

2R(R − r5)


r3+ ir4
−r1+ ir2
R − r5

0

 ψ+2 =
i√

2R(R − r5)


r1+ ir2
r3− ir4

0
R − r5

 (20)

corresponding to the eigenvalue+R, and

ψ−1 =
i√

2R(R + r5)


−r3− ir4
r1− ir2
R + r5

0

 ψ−2 =
i√

2R(R + r5)


−r1− ir2
−r3+ ir4

0
R + r5

 . (21)

corresponding to the eigenvalue−R. Inserting (20) and (21) into (19) we obtain the
potentials

A±a =
1

2R(R ∓ r5)


r4σ1+ r3σ2− r2σ3

−r3σ1+ r4σ2+ r1σ3

r2σ1− r1σ2+ r4σ3

−r1σ1− r2σ2− r3σ3

0

 (22)

where the first row on the right-hand side of (22) gives the matrix forA±1 and so on, ending
with A±5 = 0. We note some similarity with (4) and (8). In the following section we shall
see, using a different coordinate system, that the eigenvectors and geometric potentials are
in fact independent ofR—just as, in theU(1) case, the corresponding quantities in the
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spherical basis were independent ofr. Thus, our non-Abelian potentials (22) are naturally
defined on the sphereS4. To exploit this we project from five dimensions onto the surface
of the unit four-dimensional hypersphere via the coordinate transformation

rµ = 2xµ
1+ x2

(23)

r5 = 1− x2

1+ x2
(24)

whereµ runs from 1 to 4 andx2 = xµxµ. We then obtain

A+µ =
1

2x2


x4σ1+ x3σ2− x2σ3

−x3σ1+ x4σ2+ x1σ3

x2σ1− x1σ2+ x4σ3

−x1σ1− x2σ2− x3σ3

0

 (25)

while A−a = x2A+a , andA±5 = 0.
To show that they are indeedSU(2) instanton potentials, we refer to the paper by Jackiw

and Rebbi [11], which discusses theO(5) properties of the instanton. They show that the
conventional four-dimensional potentials,Ãµ, are related to ourAµ’s by

Ãµ = 2

1+ x2
Aµ (26)

in the present case (note that our˜ notation is the opposite of that in [11]). If we now
finally make the coordinate transformationx4 → −x4, we find that ourÃ−µ are precisely
the negative of theSU(2) instanton fields defined by [11] and [9]:

1
2σ ·A

inst
µ =

2

1+ x2
6µνxν (27)

where6µν = ηiµνσi/2 with ηiµν = −ηiνµ = εiµν for µ, ν = 1, 2, 3 andηiµν = δµν for
ν = 4. TheÃ+µ fields differ from theÃ−µ fields by a gauge transformation [9].

The demonstration that the geometric vector potentials in the present case are just those
of theSU(2) instanton is our main result. However, it is instructive to look at the problem
in another way, which casts further light on the geometry.

We recall that in the monopole case, we needed at least two coordinate patches to avoid
singularities in the vector potential, and that the potentials were connected at theS1 boundary
between the patches by a non-trivial gauge transformation. Indeed, the associated transition
function [16, 10] exp[±iφ] defines a map from theS1 equator to theU(1) (structure) group,
with winding number±1 (and similarly for monopoles of higher magnetic charge). In the
instanton case,S4 can be covered by two patches with an overlap region which isS3, and the
gauge transformation which connects the two corresponding potentials in thisS3 provides a
map fromS3 to SU(2) [10, 12]. These maps are characterized by an integer, the instanton
number. This (topological) number is quite analogous to the magnetic charge carried by
the monopole, but while the latter is defined via a two-dimensional surface integral of the
second-rank field strength tensor, the former involves a four-dimensional surface integral
of a fourth-rank tensor, namely Tr(FµνF ∗ρσ ), whereF ∗ is theε-dual ofF .

To bring out the interesting role ofS3, and of the patches onS4—and hence to exploit the
U(1) monopole analogy further—we now consider our problem using a coordinate system
introduced by Yang [12]. He, incidentally, referred to these configuations as generalizations
of Dirac’s monopole. And in the present case, of course, the configurations are entirely
in Euclidean space, and there is no question of interpreting them as tunnelling events in
Minkowski space.



2090 M T Johnsson and I J R Aitchison

5. Yang’s potentials

Yang uses the following coordinate system:

ri = 2Rξi sinθ

1+ ξ2
i = 1, 2, 3 (28)

r4 = R(1− ξ2) sinθ

1+ ξ2
(29)

r5 = R cosθ (30)

R = (riri) 1
2 (31)

giving the metric

ds2 = dR2+ R2 dθ2+ 4R2 sin2 θ

(1+ ξ2)2
dξ2. (32)

Note that Yang also uses what he calls ‘tensor notation’, where he ignores the coefficients
of the metric, for example he takes the gradient operator in spherical polars as(∂r , ∂θ , ∂φ)

rather than(∂r , 1/r∂θ , 1/(r sinθ)∂φ).
Applying an overall sign change (guided by the previous result) and settingXj = − i

2σj ,
Yang’s potentials are

Aα1 = 0 (33)

Aα2 = 0 (34)

Aα3 = κ( 1
2(1+ ξ2

1 − ξ2
2 − ξ2

3 )X1+ (ξ1ξ2− λξ3)X2+ (ξ1ξ3+ λξ2)X3) (35)

Aα4 = κ((ξ1ξ2+ λξ3)X1+ 1
2(1− ξ2

1 + ξ2
2 − ξ2

3 )X2+ (ξ2ξ3− λξ1)X3) (36)

Aα5 = κ((ξ1ξ3− λξ2)X1+ (ξ2ξ3+ λξ1)X2+ 1
2(1− ξ2

1 − ξ2
2 + ξ2

3 )X3) (37)

whereκ = 4i(µ cosθ − λ)/(1+ ξ2)2. µ = +1, λ = +1 corresponds to Yang’s region (or
coordinate patch)a andµ = +1, λ = −1 corresponds to regionb. Regiona includes the
‘north pole’ θ = 0, and regionb includes the ‘south pole’θ = π . We shall call these
regionsN andS respectively. A second, gauge-inequivalent field,Aβ , is given in region
N by letting µ = −1, λ = −1 and in regionS by letting µ = −1, λ = +1. (This is, as
Yang shows, the anti-instanton.)

To obtain these potentials as the geometric vector potentials for our problem we need
to rewrite the Cartesian eigenvectors (20) and (21) in terms of Yang’s coordinates. Letting
γ∓ = (i√2(1∓ cosθ)(1+ ξ2))−1 the eigenvectors become

ψ±1 = γ∓

± sinθ(2ξ3+ i(1− ξ2))

±2 sinθ(−ξ1+ iξ2)

(1+ ξ2)(1∓ cosθ)
0

 (38)

ψ±2 = γ∓

±2 sinθ(ξ1+ iξ2)

± sinθ(2ξ3− i(1− ξ2))

0
(1+ ξ2)(1∓ cosθ)

 (39)

corresponding to the eigenvalues±R respectively. Now, using (19) with the indexa now
running overξ1, ξ2, ξ3, θ andR, and comparing with Yang’s fields (34)–(37) we obtain

A+a = A(α,S)a (40)

A−a = A(β,N)a . (41)
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The gauge potentialAαa , obtained so far, is defined over only theS coordinate patch,
and the potentialAβa over only theN patch. For a full description of the monopole we also
need these potentials in the other patches, namelyA(α,N)a andA(β,S)a . Gauge potentials in
different patches are related by a non-Abelian gauge transformation of the form

Aµ→ A′µ = S(x)Aµ(x)S−1(x)− i

g
(∂µS(x))S

−1(x) (42)

whereS is an element of the gauge group, in this caseSU(2).
In the present case, we may associate a gauge transformation of the potentials with a

unitary transformation,3, applied to the basis vectors in each degenerate subspace:

|ψi〉 → |ψ ′i 〉 = 3ij |ψj 〉 (43)

Aija → Aij
′

a = 〈ψ ′j |i∂a|ψ ′i 〉 (44)

= 3Aa3−1+ i(∂a3)3
−1. (45)

Since the intersecting Kramers doublets do indeed describe theSU(2) instanton, we expect
that the other potentials,A(α,N)a andA(β,S)a , should arise from a different choice of basis
vectors.

Both A(α,S)a andA(β,N)a are gauge transformed to their other patch counterparts by (42)
with [12]

S = (1− ξ2+ 2iξ · σ)/(1+ ξ2). (46)

Thus, we apply the basis change3 = S to the basis vectors|ψ±i 〉 to obtain an alternative
basis set

ψ
′±
1 = γ∓


∓ sinθ(1+ ξ2)

0
i(1− ξ2+ 2iξ3)(1∓ cosθ)
−2(1∓ cosθ)(ξ1− iξ2)

 (47)

ψ
′±
2 = γ∓


0

± sinθ(1+ ξ2)

−2(ξ1+ iξ2)(1∓ cosθ)
i(1− ξ2− 2iξ3)(1∓ cosθ)

 (48)

using the previous definition ofγ∓. By putting these new vectors into (19) they yield
A
′+
a = A(α,N)a andA

′−
a = A(β,S)a .

Thus, we have identified the two geometric potentials associated with the higher and
lower energy Kramers doublets exactly (up to a gauge transformation) with Yang’s two
gauge-inequivalentSU(2) generalized monopoles:

A+a = Aαa (49)

A−a = Aβa . (50)

Yang shows explicitly that these instanton fields minimize the four-dimensional
Euclidean Yang–Mills action [9]. He also remarks that since he has proved that his fields
α andβ are the onlySO(5) symmetricalSU(2) gauge fields (other than the trivial case),
and since theSU(2) instanton isSO(5) symmetrical when conformally mapped toS4 [11],
the latter must be identical with one of his fieldsα, β (the anti-instanton corresponding to
the other). We have verified this identity of fields explicitly by calculating the geometric
vector potential associated with the adiabatic evolution of two Kramers doublets.
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